Science news
A New Glance On Microscopic Images

A New Glance On Microscopic Images

A doctoral student at the research center Forschungszentrum Dresden-Rossendorf (FZD) suggests interpreting the images generated by Kelvin probe force microscopy in a new way.

The last years have seen a tremendous progress in microscopic technologies. Modern microscopes are able to three-dimensionally map molecules, to identify smallest structures like single atoms, or even to distinguish between different sorts of atoms.

Atomic force microscopy is well-known even in the public as a versatile tool for the production of images on the nanoscale level. Kelvin probe force microscopy is a special type of this imaging technique named after Lord Kelvin.

When brought to the market in 1991, a scientific description of how to interprete the images was delivered. To this, physicist Christine Baumgart, a doctoral student of the nanospintronics group at the FZD, has now added new features.

Atomic force microscopes come along with a resolution even beyond the nanoscale level (the gap between two atoms averages 0.2 nanometers). Such a microscope generates an image of the surface topography by moving a tiny tip fixed on a small beam (cantilever) over the sample under investigation. The tip interacts with the atoms sitting on the surface of the sample, allowing the atoms to exert a force on the tip.

This force affects the cantilever as well, whose deformation can be measured by a laser system. A Kelvin probe force microscope uses an electrically conducting tip. Therefore it measures not only the surface topography of the sample, but also the electric force between the tip and the sample.

Hence surface phenomena like catalytic or electric activity of ion doped materials can thoroughly be investigated. While this microscopic technique is advantageous for non-destructive investigation of electric properties, the complicated measuring procedure, which even affects the reproducibility of the scientific outcome, is considered to be its main disadvantage.

Furthermore, scientists have relied on an incomplete explanation for the values they measured because it has been believed that the electric potential between the tip and the surface of the sample was measured.

Christine Baumgart now discovered what exactly is measured by Kelvin probe force microscopy. It is the electric potential which is needed to move electrons or holes from the inside to the surface of a semiconductor.

Her new findings will simplify the microscopic technique itself, and will lead to unambiguous and reproducible results concerning the structure and electronic properties of samples. Also, Kelvin probe force microscopy, which has been used mainly in materials science and semiconductor physics so far, is likely to become more attractive for other areas like biotechnology.

Microscopy

"Schematic drawing of a Kelvin probe force microscopy probe above a doped semiconductor with a thin oxide layer (grey blue atomic layer). Occupied surface states at the interface between the oxide layer and the semiconductor are animated in red and the same number of unscreened dopant atoms is animated in dark blue.

The resulting asymmetric electric dipole causes the deflection of the probe (left). By applying a bias mobile majority charge carriers are injected into the semiconductor (animated in orange) and screen the unscreened ionized dopant atoms (center). As a result the electrostatic force onto the cantilever vanishes. The cantilever moves back to its normal position (right). The applied bias is measured and depends on the concentration of dopant atoms. (Credit: Image courtesy of Forschungszentrum Dresden Rossendorf)"

Source: Forschungszentrum Dresden Rossendorf



Science News
Biology
Brain
Health
Space
Technology


© Copyright ScienceNewsDen.Com and its licensors. All rights reserved.